Covering an ellipsoid with equal balls

نویسنده

  • Ilya Dumer
چکیده

The thinnest coverings of ellipsoids are studied in the Euclidean spaces of an arbitrary dimension n. Given any ellipsoid, our goal is to find the minimum number of unit balls needed to cover this ellipsoid. A tight asymptotic bound on the logarithm of this number is obtained. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering a ball with smaller equal balls in R

We give an explicit upper bound of the minimal number νT,n of balls of radius 1/2 which form a covering of a ball of radius T > 1/2 in R , n > 2. The asymptotic estimates of νT,n we deduce when n is large are improved further by recent results of Böröczky Jr. and Wintsche on the asymptotic estimates of the minimal number of equal balls of R n covering the sphere S. The optimality of the asympto...

متن کامل

Symplectic Embeddings of 4-dimensional Ellipsoids

We show how to reduce the problem of symplectically embedding one 4dimensional rational ellipsoid into another to a problem of embedding disjoint unions of balls into appropriate blow ups of CP . For example, the problem of embedding the ellipsoid E(1, k) into a ball B is equivalent to that of embedding k disjoint equal balls into CP , and so can be solved by the work of Gromov, McDuff–Polterov...

متن کامل

Covering a Ball with Smaller Equal Balls in Rn

We give an explicit upper bound of the minimal number of balls of radius 1/2 which form a covering of a ball of radius T > 1/2 in R, n > 2.

متن کامل

Covering the crosspolytope by equal balls

We determine the minimal radius of n = 2, d or 2d congruent balls, which cover the d-dimensional crosspolytope.

متن کامل

On the Minimum Volume Covering Ellipsoid of Ellipsoids

Let S denote the convex hull of m full-dimensional ellipsoids in Rn. Given > 0 and δ > 0, we study the problems of computing a (1 + )-approximation to the minimum volume covering ellipsoid of S and a (1 + δ)n-rounding of S. We extend the first-order algorithm of Kumar and Yıldırım that computes an approximation to the minimum volume covering ellipsoid of a finite set of points in Rn, which, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2006